Παλιότερα συνήθιζα να απομνημονεύω τα γενέθλια των φίλων και των γνωστών με διάφορες αριθμητικές μνημοτεχνικές που κατά καιρούς τις επαναλάμβανα ως ασκήσεις μνήμης, από φόβο μήπως μεγαλώνοντας χάσω την ικανότητα να θυμάμαι...όλα όσα ξέρω.
Τη σημερινή ημερομηνία για παράδειγμα, που την έχω ταυτισμένη με τον σύντεκνό μου, τον ποιητή Βασίλη Δασκαλάκη, την έχω στο μυαλό μου ως δύο διαδοχικές δυνάμεις του τρία, σε φθίνουσα διάταξη.
Το 27 είναι ο κύβος του 3, δηλαδή 3^3, και το 9 είναι το τετράγωνο του 3, δηλαδή 3^2.
Ξεκινώντας το μάθημα σε ένα τμήμα της Γ' το πρωί, ανέφερα την ιδιαιτερότητα της σημερινής ημερομηνίας κι ύστερα άρχισα αμέσως την επανάληψη των άρρητων, που δεν είναι και από τα ευκολότερα ακόμη και για τα μεγάλα παιδιά. Το μάθημα πήγε σχεδόν καλά, όπως φάνηκε από τις ερωτήσεις κατανόησης που απαντήθηκαν.
Βέβαια, χθες προηγήθηκε ένα ολόκληρο μάθημα στο οποίο δεν μιλήσαμε για τίποτε άλλο εκτός από τα είδη των αριθμών και την πράξη της πρόσθεσης.
Η πρόθεσή μου, όταν μπήκα χθες στην τάξη, δεν ήταν αυτή, αλλά αναγκάστηκα να πιάσω το θέμα από την αρχή, λόγω της εσφαλμένης απάντησης στην ερώτηση "με τι ισούται το τρία ρίζα τρία συν ρίζα τρία;".
Ακούστηκαν ποικίλες εσφαλμένες απαντήσεις με επικρατέστερη την "τρία ρίζα έξι".
Αναγκάστηκα να κάνω ένα γρήγορο flashbach, ξεκινώντας με την ερώτηση:
"Θυμόσαστε τι σας είχα πει στο πρώτο μάθημα, όταν ήσασταν στην πρώτη Γυμνασίου;"
Εντάξει, αστειευόμουν! Υπήρχε περίπτωση να θυμάται κανείς; Θαύματα δεν γίνοντα! Εγώ, βέβαια, θυμόμουν επειδή κάνω ασκήσεις μνήμης! :) Κυρίως όμως θυμόμουν, επειδή έχω έναν συγκεκριμένο τρόπο "γνωριμίας με τους μαθητές" στην Α΄ Γυμνασίου!
Στο πρώτο μάθημα τους μιλώ για τους φυσικούς αριθμούς, τους άρτιους και τους περιττούς! Τονίζω πάντα με ενθουσιασμό το πόσο τυχεροί είμαστε που χρησιμοποιούμε αυτά τα εύχρηστα ψηφία και δεν αναγκαζόμαστε να κουβαλάμε στο σχολείο πετραδάκια και χαλίκια, για να παριστάνουμε τους αριθμούς όπως οι Πυθαγόρειοι, κλπ κλπ. Και φυσικά τους λέω για τα τέλεια τετράγωνα. Τέλος, ζητώ, ως άσκηση, να γράψουν στο τετράδιό τους τα τετράγωνα των πρώτων είκοσι θετικών ακέραιων αριθμών και συνιστώ να προσπαθήσουν να τα θυμούνται... Κάνει καλό στη μνήμη! Αυτό κάνω από τότε που βρέθηκα να διδάσκω σε Γυμνάσιο. Αυτά είχα πει και στα συγκεκριμένα παιδιά, δυο χρόνια πριν, όταν τα συνάντησα για πρώτη φορά. Κι αφού δεν θυμούνται, τα είπα και χθες, αναγκαστικά, συμπληρώνοντας φυσικά και τους άρρητους.
Μετά από πολλά παραδείγματα κατάλαβαν πώς και πότε γίνεται η πρόσθεση των άρρητων αριθμών και σήμερα το μάθημα ήταν σχεδόν απολαυστικό.
Βγήκα από την αίθουσα χαρούμενη και αισιόδοξη και πήγα να συνεχίσω με τη Β' Γυμνασίου, όπου βρίσκομαι σε ένα πολύ πολύ κρίσιμο σημείο: στον ορισμό, στη λειτουργία και στη χρήση των μεταβλητών! Είχαμε κάνει ήδη δυο μαθήματα και ολοκληρώσαμε τα δύο από τα τέσσερα είδη των ασκήσεων που περιέχει το σχολικό εγχειρίδιο, όταν διαπίστωσα πως δεν είχαν καταλάβει επαρκώς τη διαδικασία της "αναγωγής όμοιων όρων". Αρκετά λάθη, απορίες, δυσκολίες... Είναι δυσνόητη η έννοια της μεταβλητής και γενικά η χρήση των "γραμμάτων" στα Μαθηματικά, ακόμη και για παιδιά με ... προδιαγραφές.
Αναγκάστηκα και πάλι να αλλάξω το πλάνο του μαθήματος και να επιχειρήσω μια "εκλαΐκευση" στα όρια της ... μπακαλικής!
"Γράψτε ό,τι γράφω στον πίνακα", είπα, "κι αν δεν καταλαβαίνετε κάτι να με ρωτάτε". Γύρισα πλάτη στην τάξη - παρόλο που δεν μου αρέσει να το κάνω, αλλά πώς αλλιώς να γράψω όλες τις επεξηγήσεις, προκειμένου να καταλάβουν πώς λειτουργούν τα γράμματα και να πάψουν να τα φοβούνται; - κι άρχισα να γράφω...
"Στην Άλγεβρα χρησιμοποιούμε γράμματα που παίζουν τον ρόλο των αριθμών. Ένα γράμμα είναι ένας "γενικός αριθμός", μια "μεταβλητή" δηλαδή μια ποσότητα ή ένα μέγεθος που οι τιμές του μεταβάλλονται, παραδείγματος χάριν το βάρος μου, ο μισθός μου, η θερμοκρασία της ατμόσφαιρας), ..."
Ακριβώς εκεί ήταν που με διέκοψε ένας μαθητής λέγοντας:
"Δηλαδή, κυρία, μεταβάλλεται σημαίνει αλλάζει;"
"Ακριβώς, μεταβάλλεται σημαίνει αλλάζει", είπα καταβάλλοντας προσπάθεια να διατηρήσω την ψυχραιμία μου... Δεν είναι εύκολο να συνειδητοποιείς ότι προσπαθείς να διδάξεις σε παιδιά τη λειτουργία της μεταβλητής, όταν αυτά δεν κατανοούν τη σημασία του ρήματος "μεταβάλλω" και "μεταβάλλομαι".
Κι ενώ στην εποχή μας τα περισσότερα σχολεία είναι πλέον πολιπολιτισμικά και τα πάντα ραγδαία μεταβάλλονται, εμείς δεν αλλάζουμε απολύτως τίποτα στον τρόπο που διδάσκουμε τα Μαθηματικά!
Νομίζω πως ο μικρός μαθητής που μου έκανε σήμερα το πρωί την ερώτηση:
"Μεταβάλλεται σημαίνει αλλάζει;" έχει περισσότερες ελπίδες από μας να καταλάβει τι σημαίνει "ΑΛΛΑΖΕΙ"...