Κυριακή 11 Νοεμβρίου 2018

Περί κριτηρίων ισότητας και ...ταξικής ανισότητας!

Σήμερα που η τεχνολογία καταλύει τα χωροχρονικά εμπόδια, έχουμε τη  δυνατότητα να συζητάμε το x διδακτικό πρόβλημα, εν τη γενέσει του ακόμη, με e-φίλους, που έχουν ανάλογες ή σχετικές εμπειρίες και απόψεις και να συμφωνούμε, να διαφωνούμε, να αλληλεπιδρούμε και μέσω αυτής της διαδικασίας να αναθεωρούμε ή να ενισχύουμε τις μεθόδους και τις πρακτικές μας. Πολύ δε περισσότερο όταν οι e-φίλοι προέρχονται είτε από άλλον εκπαιδευτικό χώρο, όπως π.χ. το φροντιστήριο, είτε από άλλη εκπαιδευτική βαθμίδα, όπως π.χ. το Δημοτικό, οπότε η αλληλεπίδραση βοηθάει στη διαμόρφωση μιας γενικότερης εικόνας, που με τη σειρά της βοηθάει, αν όχι στην επίλυση του προβλήματος, τουλάχιστον στην καλύτερη κατανόησή του.
Το πρόβλημα που αντιμετωπίζω αυτές τις μέρες έχει να κάνει με τα κριτήρια ισότητας των τριγώνων, τα οποία πρέπει να διδάξω σε δύο τμήματα της Γ' Γυμνασίου. Το συγκεκριμένο κεφάλαιο είναι ένα πανέμορφο κεφάλαιο, επειδή συνδυάζει τη διαίσθηση της εικόνας με τη γλωσσική/συμβολική έκφραση και απαιτεί συλλογιστικές διεργασίες του τύπου "Αν P, τότε Q", με τις οποίες δεν είναι εξοικειωμένοι ακόμη οι μαθητές.
Και εδώ τίθεται το ερώτημα: με τι είναι εξοικειωμένοι οι μαθητές;
Ή, για να το κάνω ακόμη πιο ... προκλητικό, μήπως πρέπει να δουλεύουμε στην τάξη μόνο με όσα είναι εξοικειωμένοι οι μαθητές; Να περιοριζόμαστε αποκλειστικά και μόνο σε αυτό που ήδη γνωρίζουν ή σε αυτό που μπορούν, λόγω οικείωσης, να διαχειριστούν;
Ή, για να το κάνω ακόμη, πιο ... επιθετικό, μήπως πρέπει να κατεβάζουμε συνεχώς το επίπεδο στις (υπάρχουσες) δυνατότητες των παιδιών και να μη ζητάμε κάτι περισσότερο από αυτό που μπορούν;
Η εξέλιξη - συλλογική και ατομική - η επινόηση, η πρόοδος, η αλλαγή μπορούν να επιτελεστούν δίχως κάποιας μορφής "πίεση", είτε εσωτερική  είτε εξωτερική;
Ο R. Wilder, στο βιβλίο του "Η εξέλιξη των μαθηματικών εννοιών", αναφέρεται συχνά στην εκάστοτε "πολιτισμική πίεση" που ώθησε στην επινόηση νέων μαθηματικών εργαλείων. Αναφέρεται όμως και στην "πολιτισμική υστέρηση", αυτήν την έμφυτη αδράνεια της μάζας σε κάθε αλλαγή.
Κι εγώ ξαναρωτώ: πώς να διαχειριστώ την αδυναμία των μαθητών μου να "ενεργοποιηθούν" απέναντι σε ένα τόσο όμορφο και χρήσιμο για την εκμάθηση συλλογιστικών διαδικασιών κεφάλαιο όπως τα κριτήρια ισότητας τριγώνων;
Οι δυσκολίες που πρέπει να ξεπεραστούν είναι πολλές με κυρίαρχη για μια ακόμη φορά τη γλωσσική ένδεια, που δεν είναι φαινόμενο σημερινό.
Η γλώσσα απαιτεί πολλά χρόνια εκμάθησης και σίγουρα θέληση και προσπάθεια. Οι δύσκολες λέξεις που χρησιμοποιούνται στην Ευκλείδεια Γεωμετρία δεν περιλαμβάνονται στο λεξιλόγιο των παιδιών και τους δυσκολεύουν στην κατανόηση και απομνημόνευση των εννοιών... Συμφωνώ. Αλλά τι πρέπει να κάνω; Να σταθώ σ' αυτό; Να συμφωνήσω με όσα μου λέει ο   e-φίλος, Γιάννης, που διδάσκει σε Δημοτικό και με τον οποίον συζητάω το θέμα τον τελευταίο καιρό; Σέβομαι την άποψή του και σίγουρα εκτιμώ πολύ τη δουλειά του, αλλά στο συγκεκριμένο θέμα δεν μπορώ να συμφωνήσω στο εκατό τοις εκατό.  Βεβαίως, συμφωνώ με τον Γιάννη, που λέει πως:
       
        "Είναι δύσκολα τα ελληνικά των μαθηματικών. Προέρχονται από λόγιες λέξεις 
        που δεν τις χρησιμοποιούν τα παιδιά και οι έφηβοι",

αλλά δεν συμφωνώ με την άποψη πως αυτή η εγγενής δυσκολία, πρέπει να αλλάξει εξ ολοκλήρου τη διδακτική διαδικασία. Άλλωστε δεν είναι η πρώτη φορά που συναντούν τη συγκεκριμένη ορολογία. Επειδή τους δίδαξα και στις δύο προηγούμενες τάξεις, γνωρίζω καλά πόσες φορές τις έχουν συναντήσει και σε ποια έκταση τις έχω στο παρελθόν εξηγήσει. Τα ίδια τα παιδιά θυμούνται τις "εργασίες" που έκαναν με θέμα τα πρωτεύοντα και δευτερεύοντα στοιχεία των τριγώνων.
"Μας τα βάλατε και πέρυσι αυτά!", "Τα έχουμε κάνει, κυρία!" ακούστηκαν αρκετοί στο πρώτο (εισαγωγικό) μάθημα στα κριτήρια ισότητας των τριγώνων. Εγώ, φυσικά, θυμόμουν καλά πόσες φορές, από την Α' Γυμνασίου μέχρι τούδε, τους έχω αναθέσει σχετικές εργασίες. Μέχρι και "πορτρέτα" για την τάξη φτιάξαμε με θέμα τα τρίγωνα και τα στοιχεία τους. Με τη βεβαιότητα όμως πως απαιτείται υπενθύμιση, πριν ξεκινήσω το κεφάλαιο, και αφού εξήγησα ότι "κριτήριο" είναι ένα εργαλείο ελέγχου μιας συνθήκης, υπενθύμισα όλα όσα απαιτούνται...

Έδωσα ιδιαίτερη έμφαση στις έννοιες της περιεχόμενης και της προσκείμενης γωνίας, καθώς και στο τοπικό "απέναντι", που τόσο λάθος χρησιμοποιείται, εν γένει...
Για να βεβαιωθώ πως οι μικροί μου μαθητές θα ασχοληθούν επαρκώς και θα ετοιμαστούν καταλλήλως για τα κριτήρια ισότητας, τους είπα πως στο επόμενο μάθημα θα εξαταστούν σε αυτές τις βασικές γνώσεις. Για το σκοπό αυτό ετοίμασα το παρακάτω, ας το πούμε, "τεστ".


"Με αυτά που τους ζητώ οι πιο πολλοί  θα γράψουν μεγάλους βαθμούς...", σκέφτηκα.
"Ας γράψουν! Θα εμψυχωθούν και θα ... αγαπήσουν τη Γεωμετρία!", είπα στον εαυτό μου και σχεδόν χάρηκα από τις προσδοκίες μου.
Πόσο αφελείς σκέψεις μπορεί να κάνει μια δασκάλα, που επιμένει να ελπίζει ...
Πράγματι, ελπίζω. Πάντα ελπίζω και προσδοκώ. Αλλά τις περισσότερες φορές - τα τελευταία χρόνια -  τα αποτελέσματα δεν επιβεβαιώνουν τις (μεγάλες;) προσδοκίες μου.
Χθες το πρωί, η πρώτη μου δουλειά ήταν να διορθώσω τα γραπτά. Οι λέξεις "περιεχόμενη" και "προσκείμενη", που έπρεπε να γραφτούν, εμφανίστηκαν ελάχιστες φορές. Αντ' αυτών διάβασα "παραπληρωματική", "κορυφή" ή και λέξεις που έφτιαξαν τα παιδιά για να γεμίσουν τα κενά. Μεταξύ αυτών και "επικείμενη","προηστάμενη", "περιλαμβανόμενη", "εμποδιασμένη"! Υπήρξε βέβαια και 20 και 19, αλλά ο μέσος όρος ήταν απελπιστικά χαμηλός.
Δεν έχει άδικο ο Γιάννης, ο οποίος στο τέλος της συζήτησής μας, με αφορμή το συγκεκριμένο τεστ μου είπε, χθες, πως:

         "Έννοιες όπως διχοτόμος, διάμετρος κ.ά. τις μαθαίνεις μέσα από τις ασκήσεις, 
          στις  οποίες απαιτείς να χρησιμοποιούν τους σωστούς όρους. Σιγά σιγά με  
          υπομονή θα δεις βελτίωση. Εσύ από ό,τι έχω καταλάβει απαιτείς να τους 
          μάθουν και μετά να λύσουν ασκήσεις. Δεν νομίζω ότι είναι αποτελεσματικό."

Δεν διαφωνώ πως οι έννοιες αυτές είναι δύσκολες! Είναι όμως δυνατόν να μάθουμε μόνο τα εύκολα; Και πόσο σιγά σιγά να τα μάθουμε αυτά; Τα ξεκινήσαμε στην Α' Γυμνασίου και προχωράμε χρόνο με το χρόνο, ξανά και ξανά. Σε λιγότερο από δώδεκα μήνες, αυτά τα παιδιά θα φοιτούν, στην Α' Λυκείου. Δηλαδή, τα περισσότερα από αυτά. Κι εκεί τα πράγματα θα είναι ακόμη πιο απαιτητικά. Τα κριτήρια ισότητας τριγώνων θα διδαχτούν, υποτίθεται, εν τάχει, επειδή θεωρούνται, όπως λένε  οι οδηγίες από το Υπουργείο, γνωστά. (Να γελάσω ή να το αφήσω για μετά;) Και τότε θα αναδείξουν, σε αυτήν την κρίσιμη πρώτη τάξη του Λυκείου, πως τα κριτήρια, εν τέλει, ήταν, είναι και θα είναι ταξικά!

------------------------------------------------------------------
Προσωπικά αδυνατώ να δεχτώ πως παιδιά που είναι σε θέση να αποδώσουν νόημα σε αρτικόλεξα ή σε μυστήριες αγγλικές λέξεις και να τις χρησιμοποιήσουν λειτουργικά, δεν μπορούν να κατανοήσουν έννοιες όπως "περιεχόμενη", "προσκείμενη" κι άλλα τέτοια δύσκολα που συναντούν στα Μαθηματικά.
Βρίσκω πολύ εύκολη τη λύση να περιοριζόμαστε απλά σε όσα μπορούν και σε όσα κατανοούν τα παιδιά. Άλλωστε, πιστεύω ακόμη στη "ζώνη επικείμενης ανάπτυξης" και σε διάφορα τέτοια -παλαιού τύπου- παιδαγωγικά.
Χωρίς, βέβαια, να αμφιβάλλω καθόλου για το ό,τι η εποχή μας απαιτεί αναθεώρηση και σίγουρα καινούρια μέτρα και σταθμά...

1 σχόλιο:

  1. Εγώ πιστεύω ότι ένας σημαντικός παράγοντας που δυσχεραίνει το έργο μας (είτε στο σχολείο, είτε στο φροντιστήριο) είναι η ολοένα μειούμενη ανοχή των μαθητών μας σε αυτήν την «πίεση» που αναφέρεις.
    Η υπομονή που δείχνει ένας μαθητής όταν «κολλήσει» κατά την επίλυση μιας άσκησης είναι το κλειδί για την εξέλιξή του. Οι ασκήσεις που βάζουμε για το σπίτι δεν είναι ουρανοκατέβατες, είναι παρόμοιες με παραδείγματα που έχουμε λύσει στον πίνακα κατά την παράδοση. Επομένως, υπάρχουν γραμμένες στο τετράδιο (ή το βιβλίο). Όταν κολλήσεις σε κάποιο σημείο, ξανακοιτάς πρώτα το λυμένο παράδειγμα πριν αποφασίσεις να παραδώσεις τα όπλα και να αναφωνήσεις «Κύριε, δεν το κατάλαβα!». Πόσοι μαθητές άραγε το κάνουν;
    Ειδικότερα στο Λύκειο δίνεται κ λυσάρι. Όταν η άσκηση είναι από το σχολικό βιβλίο, αν κολλήσεις μπορείς να δεις και το λυσάρι για να δεις τη λύση. Όχι βέβαια για να την αντιγράψεις στεγνά, αλλά για να προσπαθήσεις να την καταλάβεις κ να γράψεις μετά την άσκηση μόνος σου. Πόσοι μαθητές άραγε το κάνουν;
    Η αλήθεια είναι ότι οι μαθητές που συνήθως δείχνουν αυτή την υπομονή, την δείχνουν ακριβώς γατί πιστεύουν ότι στο τέλος θα τη λύσουν την άσκηση και τελικά τα καταφέρνουν. Επομένως, έχουν ήδη αυτοπεποίθηση και με το να λύσουν την άσκηση την ενισχύουν κιόλας. Εκτός, όμως από την αυτοπεποίθησή τους, ενισχύουν και τις δεξιότητές τους και δυναμώνουν σα μαθητές. Τα ακριβώς αντίθετα ισχύουν για τους μαθητές που δεν έχουν αυτήν την υπομονή. Αυτό που ίσως δε συνειδητοποιούν είναι ότι τελικά το μυστικό βρίσκεται στον έξτρα χρόνο που αφιερώνει αυτός που λύνει την άσκηση. Αυτός ο χρόνος είναι χρυσή επένδυση.

    ΥΓ: Το πλέον ανησυχητικό είναι ότι αρκετά παιδιά έχουν γίνει τόσο ανυπόμονα, που ούτε την προπαίδεια δεν πιέζονται να μάθουν και την μπερδεύουν ακόμη στο Γυμνάσιο.

    ΑπάντησηΔιαγραφή